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FORMATION OF HIGH CHARGE STATE HEAVY ION BEAMS WITH 
INTENSE SPACE CHARGE 

P.A. Seidl# and J-L. Vay, LBNL, Berkeley, CA 94720, U.S.A.

Abstract 
High charge-state heavy-ion beams are of interest and 

used for a number of accelerator applications. Some 
accelerators produce the beams downstream of the ion 
source by stripping bound electrons from the ions as they 
pass through a foil or gas.  Heavy-ion inertial fusion (HIF) 
would benefit from low-emittance, high current ion beams 
with charge state >1. For these accelerators, the desired 
dimensionless perveance upon extraction from the emitter 
is ~10-3, and the electrical current of the beam pulse is ~ 1 
A. For accelerator applications where high charge state 
and very high current are desired, space charge effects 
present unique challenges. For example, in a stripper, the 
separation of charge states creates significant nonlinear 
space-charge forces that impact the beam brightness. We 
will report on the particle-in-cell simulation of the 
formation of such beams for HIF, using a thin stripper at 
low energy. 

MOTIVATION 
For accelerator applications where high charge state and 

very high current are desired, space charge effects present 
unique challenges. For example, in a stripper, the 
separation of charge states creates significant nonlinear 
space-charge forces, which impact the beam brightness. 

A heavy ion accelerator driver for inertial fusion energy 
would have unusually high betatron tune depression [1] 
due to space charge.  This is characterized by the ratio of 
the space-charge depressed phase advance per lattice 
period to the betatron phase advance, / o  0.1-0.2 
through much of the accelerator.  Prototype driver-scale 
injectors (I~ 0.5 A, n < 1 mm�•mrad, t  5 s) have 
produced single charge (q=1) heavy ions, because of their 
demonstrated relative charge state purity, low emittance 
and high current [2]. Thus, most of the related accelerator 
concepts and studies are for singly-ionized ions.  For 
average accelerator gradients of a few MV/m, the total 
accelerator length is several km.  Higher charge state ions 
with suitable beam parameters would enable shorter 
accelerators.  Developing high charge state ion sources is 
one approach.  In this paper, we explore the space charge, 
multiple scattering and straggling implications of 
stripping a singly ionized beam to a higher charge state 
shortly after injection. 

We note that other accelerator stripper systems have 
observed some space charge effects [3].   

500 MeV, U+  U12+ 
As a test case, we have chosen beam parameters similar 

to those that have recently been considered for a heavy-
ion fusion driver.  The beam stripping energy is 0.5 GeV, 
and the downstream charge state of interest is q=12, 
which could be further accelerated to tens of GeV in an 
accelerator that would be much shorter than an accelerator 
for q=1 (no stripping).  The question is how much beam 
degradation occurs in the stripping process due to 
straggling, multiple scattering, and nonlinear space charge 
forces due to the other charge states created in the 
stripper, and the alternating dipole fields designed for 
charge state separation.  

The initial current and transverse emittance of the q=1 
beam are 11 Amperes and un = 10 mm�•mr 
(unnormalized), focused to a space-charge limited waist 
with a radius of  ri = 5 mm at the entrance of the vapor jet.  
The longitudinal energy spread is 35 keV, based on the 
estimated longitudinal emittance of the injected beam into 
the accelerator.  The beam is simulated using the 3-
dimensional Warp particle-in-cell [4] code.  A 0.1 s 
bunch is simulated, shorter than needed for the fusion 
application (~ 1 s), but long enough to see space charge 
effects in a relatively short computation time.  Electrons 
created in the stripping process are followed through the 
simulation, but they are mostly lost shortly downstream of 
the stripping target due to charge separation in dipoles. 
Electrons produced in beam gas interactions and from 
ions lost to the walls are not included. 

We assume that the higher charge states are reached by 
a series of single-electron-loss interactions, that is (q  
q+1) = 10-17 cm2, for all q.  For a 3-cm thick vapor jet of 
Li with density 1017 / cc, the charge state distribution 
leads to a binomial distribution with peak probability of 

0.11 for charge state 12.  The actual situation is more 
complicated, as shown in [5] for example, where multiple 
electron loss and electron pickup are considered.  
However, our simpler model is adequate for studying the 
magnitude of space charge effects during stripping. 

The energy spread from straggling, , will lead to an 
increase in the longitudinal emittance of the beam.  There 
are experimental data [6] in that are a modest 
extrapolation from the beam parameters considered, and 
tabulated for a variety of beam-target combinations.   The 
Bohr energy independent straggling model [7] shows the 
dominant atomic number and target thickness 
dependence:  

 B
2 4 Z1

2Z2e
4N x   (1) 

 Z1 and Z2 are the ion charge of the projectile and target 
(stripper), N is the number density of the target, and x is 
the thickness of the target. Scaling the measurements [6] 
of straggling of 127I on thin Au targets, (1.4 MeV/amu) to 

 ____________________________________________  

*Performed under the auspices of the U.S Department of Energy by 
LBNL under contract. DE-AC02-05CH11231.   
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